5 research outputs found

    Modeling and Mitigation of Wireless Communications Interference for Spectrum Sharing with Radar

    Get PDF
    Due to both economic incentives and policy mandates, researchers increasingly face the challenge of enabling spectrum sharing between radar and wireless communications systems. In the past eight years, researchers have begun to suggest a wide variety of approaches to radar-communications spectrum sharing, ranging from transmitter design to receiver design, from spatial to temporal to other-dimensional multiplexing, and from cooperative to non-cooperative sharing. Within this diverse field of innovation, this dissertation makes two primary contributions. First, a model for wireless communications interference and its effects on adaptive-threshold radar detection is proposed. Based on both theoretical and empirical study, we find evidence for both Gaussian and non-Gaussian communications interference models, depending on the modeling situation. Further, such interference can impact radar receivers via two mechanisms—model mismatch and boost to the underlying noise floor—and both mechanisms deserve attention. Second, an innovative signal processing algorithm is proposed for radar detection in the presence of cyclostationary, linearly-modulated, digital communications (LMDC) interference (such as OFDM or CDMA) and a stationary background component. The proposed detector consists of a novel whitening filter followed by the traditional matched filter. Performance results indicate that the proposed cyclostationary-based detector outperforms a standard equivalent detector based on a stationary interference model, particularly when the number of cyclostationary LMDC transmitters is small and their interference-to-noise ratio (INR) is large relative to the stationary background

    Statistical Results on the Performance of an Adaptive-Threshold Radar Detector in the Presence of Wireless Communications Interference Revision 1

    Get PDF
    In an article recently accepted for publication in the IEEE Transactions on Aerospace and Electronic Sys-tems [1], we investigate the problem of specifying interference protection criteria for a radar sharing spectrum with wireless communications. In that paper, we first propose a statistical model for wireless communications interference based on existing interference and clutter models and supported by original simulations. Then we model the statistical effects of such interference on the detection performance of a cell-averaging adaptive-threshold radar detector. While the IEEE paper summarizes the statistical results and plots some representative figures, many additional calculations were computed than could be presented in an IEEE paper. Therefore, this technical report publishes the complete set of statistical results computed, for the interested reader\u27s reference

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Optimal Linear Detection of Signals in Cyclostationary, Linearly Modulated, Digital Communications Interference

    No full text
    corecore